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Abstract: The tent-making bat hepatitis B virus (TBHBV) is a hepadnavirus closely related to human hepatitis

B virus. The ecology of TBHBV is unclear. We show that it is widespread and highly diversified in Peters’ tent-

making bats (Uroderma bilobatum) within Panama, while local prevalence varied significantly between sample

sites, ranging from 0 to 14.3%. Females showed significantly higher prevalence than males, and pregnant

females were more often acutely infected than non-reproductive ones. The distribution of TBHBV in bats was

significantly affected by forest cover, with higher infection rates in areas with lower forest cover. Our data

indicate that loss of natural habitat may lead to positive feedback on the biotic factors driving infection

possibility. These results underline the necessity of multidisciplinary studies for a better understanding of

mechanisms in pathogen–host relationships and for predictions in disease ecology.
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INTRODUCTION

Over the last century, the majority of the world’s biosphere

has been vastly transformed. Many forests are lost or

fragmented due to plantations and farmland and traversed

by road networks (Ellis et al. 2010; Ellis 2011). The loss of

natural habitat directly results in loss of biodiversity and

drives many specialist species to extinction. In contrast,

Electronic supplementary material: The online version of this article (https://doi.

org/10.1007/s10393-018-1387-5) contains supplementary material, which is available

to authorized users.

Correspondence to: Thomas Hiller, e-mail: thomas.hiller@alumni.uni-ulm.de

EcoHealth
https://doi.org/10.1007/s10393-018-1387-5

Original Contribution

� 2018 EcoHealth Alliance

http://orcid.org/0000-0003-4044-9956
https://doi.org/10.1007/s10393-018-1387-5
https://doi.org/10.1007/s10393-018-1387-5
http://crossmark.crossref.org/dialog/?doi=10.1007/s10393-018-1387-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10393-018-1387-5&amp;domain=pdf


some generalist species can persist and occasionally even

profit from changes in the environment, with some

showing inflated population densities in disturbed areas

(Fahrig 2003; Suzán et al. 2008). Fragmentation of habitats

has been shown to decrease health and fitness of animals

and to promote diseases, parasitism, and virus occurrence

(Keesing et al. 2006; Acevedo-Whitehouse and Duffus

2009; Cottontail et al. 2009; Brearley et al. 2013).

Highly diverse tropical forests, in particular, are espe-

cially affected by habitat loss, as the functioning of these

ecosystems depends on intact animal assemblages (Lau-

rance et al. 2011; Aide et al. 2013). Bats are a good indicator

group for habitat health as they are highly diverse and play

major roles in pollination, pest control and seed dispersal

(Jones et al. 2009; Cunto and Bernard 2012). In addition to

their importance for ecosystem functioning, bats also are

long-lived (Seim et al. 2013) and can have large group sizes

and high mobility (Luis et al. 2013), all of which make

them suitable model organisms for epidemiological studies

(Drexler et al. 2012; Brook and Dobson 2015). Bats were

identified as hosts to a great variety of viruses, some of

them causing zoonotic diseases (e.g., Ebola, SARS, rabies),

but research has focused mainly on RNA viruses, leaving

DNA viruses largely unexplored (Calisher et al. 2006; Jones

et al. 2008; Brook and Dobson 2015).

Of particular interest among the DNA viruses are

orthohepadnaviruses that infect mammals (Rasche et al.

2016). Hepatitis B, a representative of these orthohepad-

naviruses, is one of the most common and serious viral

infectious diseases in humans, causing acute and chronic

infections of the liver, resulting in an estimated 900,000

deaths each year (WHO Global Hepatitis Report 2017).

Transmission occurs chiefly by direct contact with infected

blood (WHO fact sheet #204, updated July 2016). In hu-

mans, the course of infection depends on the time of virus

acquisition. Infection with hepatitis B virus (HBV) during

birth results in 90% of chronic courses, while infection

during early childhood leads to chronicity in 30% of all

cases. In contrast, over 95% of infections acquired by im-

mune-competent adults result in acute and self-limiting

course (Seeger and Mason 2000; Gish et al. 2015). Chronic

courses of infection may be a common feature of ortho-

hepadnaviruses. In woodchucks, an animal model of HBV,

perinatal infection with the woodchuck hepatitis virus

(WHV) results in 100% chronic courses infection (Seeger

and Mason 2000).

Orthohepadnaviruses are known from North Ameri-

can rodents, non-human apes, and humans (Locarnini

et al. 2013) but were recently also found in bats, both in the

Old World and in the New World (Drexler et al. 2013; He

et al. 2013, 2015). The tent-making bat Hepatitis B virus

(TBHBV), isolated from Peters’ tent-making bats (Uro-

derma bilobatum) in Panama, is antigenically closely related

to primate HBV (Drexler et al. 2013).

Drexler et al. (2013) showed that TBHBV surface

proteins allowed specific viral binding and in vitro entry

into human hepatocytes via the human HBV high-affinity

receptor NTCP (natrium taurocholate co-transporting

protein), providing an interesting viral model organism.

Uroderma bilobatum is a widespread, highly mobile fru-

givorous bat in the Neotropics that is specialized on eating

figs. It commonly occurs in secondary forests and con-

structs its own roosts by modifying leaves of seven different

plant families, often palms, into tent-like shelters (Baker

and Clark 1987; Rodrı́guez-Herrera et al. 2007). It adapts

well to anthropogenically modified habitats and readily

roosts in the eaves of human houses, as well as in the leaves

of non-native palms such as Cocos nucifera, Coccothrinax

barbadensis, or Livistona chinensis (Timm and Lewis 1991;

Rodrı́guez-Herrera et al. 2007) that are often planted as

garden ornamentals (Sagot et al. 2013). Its potentially close

contact with humans, the relatedness of TBHBV to primate

HBV, and the ability of TBHBV to use the human NTCP

are factors supporting the importance of virus ecology

studies in U. bilobatum. We investigated environmental

and host traits favoring TBHBV infection as well as pat-

terns of transmission and distribution in U. bilobatum.

MATERIALS AND METHODS

Between September 2012 and August 2015, we collected

blood samples of Peters’ tent-making bat, U. bilobatum

(Phyllostomidae: Stenodermatinae) in Panama. The sam-

ples were mainly obtained in the Panama Canal Zone

(around Barro Colorado Island (BCI) and Gamboa) as well

as from the regions Bocas del Toro, Los Santos, and Ver-

aguas (Fig. 1), representing a total of 46 capture locations.

Capturing and handling of bats were approved by the

Smithsonian Tropical Research Institute (IACUC protocols

100316-1001-18 and 2013-0401-2016) and by the Pana-

manian Government (Ministerio de Ambiente, research

permits: SE/A-68-11, SE/A-75-13, SE/A-69-14; export per-

mits: SEX/A-37-14, SEX/A-22-15, and SEX/A-60-15). Bats

were captured using mist nets (Ecotone, 6 9 2.5 m,

16 mm mesh and 2 9 70 denier) set in the forest or with
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hand nets directly at the roost. Individual bats were kept

separately in freshly cleaned, soft cloth bags until process-

ing. Sex, age [juvenile, subadult, and adult; based on grade

of ossification of the epiphyseal plates (Sharifi et al. 2008)],

and reproductive status (scrotal and non-reproductive in

males; pregnant, lactating, post lactating and non-repro-

ductive in females) were determined, and adult bats were

individually marked with necklaces following Handley and

Gardner (1991) or PIT tags (ID100; Euro ID, Weilerswist,

Germany). Up to 70 ll of blood was drawn with EDTA

coated capillaries (75 ll, Kabe, Germany) by puncturing

the cephalic vein with a 27 G needle (Sterican, Braun,

Germany) (Cottontail et al. 2009). After processing, all bats

were offered sugar water and released at the capture site.

Blood samples were stored on ice in the field and thereon at

- 80�C until processing in the laboratory.

DNA was purified from blood specimens using the

MagNA Pure 96 DNA and Viral NA Small Volume Kit

(Roche, Mannheim, Germany). Following protocols de-

scribed in Drexler et al. (2013), purified samples were

screened for hepadnavirus DNA using a broadly reactive

nested-PCR leading to amplification of a 354 bp fragment

encoding the surface and polymerase proteins. Near-full

genome amplifications were conducted using strain-specific

primers (primer sequences available upon request). Viral

loads were quantified by specific real-time PCR as de-

scribed before (Drexler et al. 2013). To detect specific

antibodies against TBHBV proteins in bat serum,

immunofluorescence assays were conducted using HuH7

cells transfected with 1.1 overlength expression plasmids of

TBHBV as described (Drexler et al. 2013).

Phylogenetic Analyses

Sequences were aligned with Geneious 9.1.3 using the

MAFFT package (version 7.222). DnaSP 5.10.01 was used

to detect point mutations within a near-complete genome

alignment of 15 novel TBHBV sequences and 4 published

sequences (NC_024445, KC790379, KC790380, KC790381)

(Drexler et al. 2013). The antigenic loop within the S-ORF

was predicted in TMHMM (v.2.0).

Neighbor-joining phylogenetic analysis of a 2503 nu-

cleotide fragment was conducted in MEGA7 (Kumar et al.

2016) using the complete deletion option and a percentage

distance substitution model including a bootstrap analysis

with 1000 replicates.

Statistical Analyses

All statistics were performed in R v3.3.1 (R Development

Core Team 2016). We tested for virus genetic isolation by

geographic distance using a Mantel test (mantel(), R

package vegan, Oksanen et al. 2016). Tip-randomization

tests for capture year and capture region were conducted

using BaTS (Parker et al. 2008). Therefore, we used the

Figure 1. Sampling regions and prevalence of PCR-positive TBHBV infections in Uroderma bilobatum in Panama.
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PCR screening fragments available from all positive sam-

ples, including a total of 24 sequences and a sequence

length of 354 nucleotides. We used MCMC trees created in

BEAST v.1.8.3 (Drummond and Rambaut 2007) using a

HKY substitution model under a strict clock and 10 million

generations (burn-in 1 million).

As a basis for further analyses, we extracted data for

forest cover and forest cover loss using ArcMap (ESRI

2011) and maps based on Landsat images provided by the

University of Maryland (Hansen et al. 2013, http://eartheng

inepartners.appspot.com/science-2013-global-forest). We

used a 1 km radius around each capture site (resulting in

314 ha), based on recent telemetry studies estimating the

home range of U. bilobatum at around 23 ha (Villalobos-

Chaves et al. 2016). Forest cover was calculated based on a

map of tree canopy cover density (0–100%) from 2000,

setting the threshold at 85% density, which resulted in 99%

of the tree canopy cover density values for each of the

protected study sites (Bohio, Gigante, and Peña Blanca).

Forest cover loss was extracted from a map representing the

loss of forested areas during the period 2000–2014, encoded

as percental loss of forested area in a 1 km radius around

each capture site.

Using generalized linear mixed effects models (glmer(),

R package lme4, Bates et al. 2007), we identified the vari-

ables best predicting TBHBV infections. Initial data

exploration was conducted following Zuur et al. (2010).

Our full model consisted of the infection status (infected vs.

non-infected, binomial distribution) as a response variable

and the variables sex, reproductive status, percent forest

cover, and percent forest cover loss in a 1 km radius

around each capture site as fixed effects. We also included

the year of capture as well as the capture location nested in

capture region as random effects. We scaled the fixed

variables and tested for multi colinearity using variance

inflation factors (VIFs) implemented in the R library AED

(Zuur 2010). Further, we tested for spatial autocorrelation

of infected bats in our data set as well as in model residuals

of our candidate models using Moran’s I test (Moran.I(), R

package ape, Paradis et al. 2004).

The best models were selected based on corrected

Akaike’s information criterion (AICc) and the ‘all-subset

approach’ as described in (Symonds and Moussalli 2011)

(dredge(), R package MuMIn, Barton 2016). Parameter

estimates were obtained using model averaging of set of top

models, based on D2 AICc as cutoff (Burnham and

Anderson 2003; Symonds and Moussalli 2011). For all

models included in the top-model set, we calculated

pseudo-R2 values to estimate model fit by accounting for

the variation explained by both fixed and random effects

(rsquared.glmm(), R packaged MuMIn).

Pregnant and lactating females were grouped together

with scrotal males as reproductive, to obtain a single

reproductive status variable for both females and males. To

identify biotic and abiotic factors influencing TBHBV

infections, we included in our statistical analysis 54 U.

bilobatum blood samples from a former study (Drexler

et al. 2013), as well as 7 additional individuals of the same

sampling period that had not been previously analyzed, all

collected in the BCI canal zone.

RESULTS

We collected a total of 474 individual blood samples, from

which 20 (4.2%) tested positive for TBHBV DNA (Table 1,

Supplementary Table 1). Immunofluorescence analyses

revealed the presence of antibodies against TBHBV in

samples from 12 additional TBHBV PCR-negative indi-

viduals and showed positive reactions in 4 of the PCR-

positive samples. The detection rate of antibody-positive

bats (3.4%) was comparable to PCR-positive bats (4.2%).

Ratios of IFT-positive to PCR-positive varied between 0

and 4.5 and differed significantly between the sampling

sites BCI and Gamboa (pairwise Fisher’s test with Bonfer-

roni correction, p < 0.01). The viral loads were high with

up to 3.20 9 1012 copies per ml serum and an average of

1.96 9 1011cp/ml serum (see Table 1 for details).

Near-complete TBHBV genomes (2503 nt, whole

genome comprises 3149 nt (Drexler et al. 2013) were se-

quenced from 15 individual samples and shorter fragments

for the five remaining samples. All sequences were up-

loaded to Genbank and are accessible under the following

numbers: MG231914-MG231918 and MG252537-

MG252551. To detect hints for immune pressure, non-

synonymous substitutions were analyzed among the gen-

ome of 19 sequences, including 4 formerly published

TBHBV sequences (Drexler et al. 2013) (Fig. 2). Accumu-

lation of mutations was detected in presumably antigeni-

cally active sites within the surface protein-coding open

reading frame (ORF), including c-terminal amino acids

within the preS1 domain and the predicted antigenic loop.

In a phylogenetic analysis, viruses clustered with pre-

viously described TBHBV strains from Panama (Drexler

et al. 2013) (Fig. 3). Virus strains did not show any clus-

tering according to year of sampling using a tip-random-
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ization test including all available TBHBV fragments (354

nt). Further, clustering according to sampling sites was only

significant for two regions, namely Gamboa and Veraguas

(Table 2). Some virus strains sampled among large geo-

graphic ranges showed low genetic distance (Fig. 3), for

example, B404 from Los Santos, which is closely related to

sequences from the BCI canal zone, approximately 200 km

away. Indeed, using a Mantel test, no support for isolation

by distance was detected (Mantel test, R = 0.023,

p = 0.166).

Combining results of PCR- and IFT-screening females

exhibited a higher prevalence (9.7%) than males (3.8%)

(Chi-squared, X2 = 5.55, df = 1, p = 0.019). Local preva-

lence of PCR-positive bats varied between 0 and 14.3%.

All variables used in our mixed models to predict

TBHBV infections had variance inflation factors (VIFs)

below 3, indicating the absence of colinearity among those

Table 1. TBHBV DNA and Antibody Detection in U. bilobatum from Panama.

ID Date Capture location Region Age Sex Reprod.

status

TBHBV DNA Conc.

(cp/ml serum)

TBHBV

IFT

BN092 12.11.2012 Gamboa #161 Gamboa A F NR Pos 4.21E + 09 Neg

BN079 1.12.2012 Gamboa #152 Gamboa A F P Pos 2.58E+07 Neg

BN057 10.12.2012 Gamboa #176 Gamboa A F P Pos 5.40E+08 Neg

BN058 19.12.2012 Gamboa #161 Gamboa A F NR Pos 4.96E+09 Neg

BN084 20.12.2012 Gamboa #176 Gamboa A F P Pos 4.88E+09 Neg

BN071 30.3.2013 Gamboa #185 Gamboa A F L Pos 5.88E+07 Neg

BN070 19.7.2013 Gamboa #173 Gamboa A F L Pos 2.74E+09 Pos

BCA_B033 29.7.2013 Pena Blanca BCI CZ A F L Neg – Pos

BCA_B044 1.8.2013 Pena Blanca BCI CZ A F L Neg – Pos

BN020 19.9.2013 Gamboa #155 Gamboa A F NR Pos NA Neg

BCA_B094 8.11.2013 El Giral Colon A F NR Pos 2.22E+10 Pos

BCA_B120 8.11.2013 El Giral Colon A F PL Neg – Pos

BCA_B321 28.4.2014 Mona Grita BCI CZ A M NR Neg – Pos

BCA_B322 28.4.2014 Mona Grita BCI CZ A F L Neg – Pos

BCA_B327 29.8.2014 El Giral Colon A F NR Pos 7.49E+05 Neg

BCA_B425 16.10.2014 Chicha BCI CZ A M Sc Pos 3.20E+12 Neg

BCA_B404 21.11.2014 Los Asientos Los Santos A M Sc Pos 4.88E+06 Neg

BCA_B456 10.12.2014 Mona Grita BCI CZ A M Sc Neg – Pos

BCA_B307 11.12.2014 Maranon de Sona Veraguas A M NR Pos 4.57E+06 Pos

BCA_B305 11.12.2014 Maranon de Sona Veraguas A M NR Neg – Pos

BCA_B218 12.12.2014 El Espino Veraguas A F PL Pos 1.04E+09 Neg

BCA_B304 12.12.2014 El Espino Veraguas A F PL Pos 4.90E+11 Pos

BCA_B445 12.12.2014 El Espino Veraguas A F PL Neg – Pos

BCA_B531 15.1.2015 Bohio sur roost 351 BCI CZ A F P Pos 1.22E+07 Neg

BCA_B350 29.4.2015 Gamboa #172 Gamboa SA M NR Pos 5.11E+05 Neg

BCA_B498 29.4.2015 Gamboa #171 Gamboa A F PL Pos 1.20E+07 Neg

BCA_B512 30.4.2015 Gamboa #185 Gamboa A F P Pos 2.16E+07 Neg

BCA_B641 30.4.2015 Gamboa #185 Gamboa A F P Pos 7.72E+03 Neg

BCA_B561 3.7.2015 Bohio BCI CZ A F L Neg – Pos

BCA_B612 14.7.2015 Pena Blanca BCI CZ A F L Neg – Pos

BCA_B711 27.8.2015 Uroderma Island BCI CZ A M Sc Neg – Pos

BCA_B715 27.8.2015 Uroderma Island BCI CZ A M Sc Neg – Pos

A adult, SA subadult, F female, M male, NR non-reproductive, Sc scrotal, P pregnant, L lactating, PL post lactating.

Host-Related Effects on Bat Hepadnavirus Infection



variables (Zuur et al. 2010). We further did not detect

spatial colinearity between our observations (Moran’s I,

I = 0.00, p = 0.24). To ascertain that no regional effect is

driving our modeling outcome, we excluded during our

preliminary model selection process individual sample re-

gions, however, we obtained throughout consistent results.

Of the 16 models created by the all-subset model approach

(Supplementary Table 3), only two entered in the D2 AICc

model set (Table 3). Both top models shared three vari-

ables, the extrinsic factor forest cover as well as the intrinsic

variables sex and reproductive status, indicating a high

importance of these variables. For decreasing forest cover

the local TBHBV prevalence was increasing; additionally,

females as well as reproductive active individuals tended to

have a higher prevalence compared to males or non-re-

productive active individuals, respectively (Table 4). The

variable forest cover loss was slightly positively correlated

with higher TBHBV prevalence, but it was weighted fairly

low when averaged over all subset models (Table 4). Model

residuals of both top models did not show spatial auto-

correlation (Moran’s I, I = - 0.00, p = 0.91; I = - 0.00,

p = 0.99). The conditional pseudo-R2 values estimating

model fit for the two top models were 0.33 and 0.34,

respectively (Table 3).

Based on these two models incorporating 535 indi-

vidual observations, we plotted the predicted probabilities

of a TBHBV infection showing all three significantly

explaining variables, whereas forest cover loss was kept

constant in the graph for the second model (ggeffect(), R

package ggeffects, Lüdecke 2017). The graphs show prob-

abilities at least ten times higher in areas without forest

cover than in fully forested areas (Fig. 4) and fit well the

distribution of the raw data used (Fig. 5). Our model

implicates therefore a strong influence of the available

forest cover throughout all combinations of sex and

reproductive status on the infection probability with

TBHBV.

Figure 2. Analysis of non-synonymous nucleotide exchanges in 19 near-complete TBHBV genomes. The alignment comprises 2503

nucleotides of 15 novel TBHBV sequences and published sequences NC_024445, KC790379, KC790380, KC790381. For details on ORF

position of amino acid exchanges, see Supplementary 1.

Figure 3. Neighbor-joining phylogenetic tree of near-complete TBHBV genomes. A total of 2503 nucleotides were used for the analysis

conducted in MEGA7. Bootstrap values (%) larger than 75 are shown. Novel sequences are indicated in red (Color figure online).

T. Hiller et al.



DISCUSSION

Despite the high similarity of TBHBV to human hepatitis B

virus, no cross-species infections between the natural

reservoir species U. bilobatum and humans are reported,

nor expected (Drexler et al. 2013; Rasche et al. 2016). In

fact, this close relatedness offers an exceptional possibility

to study disease transmission among host bats in their

Table 2. Tip Randomizations of BHBV Sequences Displayed in Fig. 3 for (a) Capture Year and (b) Capture Region.

Category Statistic BaTS estimate (95% HPD CIs) p values

Capture year AI 2.11 (1.58, 2.62) 0.060

PS 18.62 (16, 21) 0.300

UniFrac 0.12 (0.02, 0.25) 0.080

2015 1.38 (1, 2) 1.000

2014 1.97 (2, 2) 0.130

2013 1.00 (1, 1) 1.000

2012 1.57 (1, 3) 0.060

2011 1.00 (1, 1) 1.000

2010 1.00 (1, 1) 1.000

Capture region AI 1.31 (0.86, 1.74) < 0.001

PS 12.74 (10, 15) 0.050

UniFrac 0.26 (0.12, 0.43) 0.010

BCNM 1.43 (1, 2) 1.000

El Giral 1 (1, 1) 1.000

Gamboa 4.05 (3, 6) 0.010

Los Santos 1 (1, 1) 1.000

Veraguas 1.94 (1, 2) 0.010

Significant values are highlighted in bold.

HPD CIs highest posterior density confidence intervals (credible sets).

Table 3. Multi-model Inference Based on the D2 AICc Candidate Model Set for the Effects of the Reproductive Status, Proportion of

Forest Cover, Sex, and the Proportion of Forest Cover Loss on the TBHBV Infection Pattern of Uroderma bilobatum (n = 535).

Candidate Model K R2
c AICc DAICc w waccum

repro.stat. + forest cover + sex 6 0.33 195.6 0 0.56 0.56

repro.stat. + forest cover + forest cover loss + sex 7 0.34 196.1 0.51 0.44 1

Table 4. Summary of the Parameters Proportion of Reproductive Status, Proportion of Forest Cover, Sex and the Proportion of Forest

Cover Loss that were Included in the D2 AICc Model Set, Averaged Over All Subset Models.

Fixed variable Estimate Unconditional SE Rel. importance Confidence intervals

Lower Upper

(Intercept) - 2.34 0.51 - 3.35 - 1.33

Forest cover - 3.01 1.34 0.86 - 5.65 - 0.36

repro.stat. 1.11 0.48 0.79 0.16 2.06

Sex - 1.15 0.52 0.77 - 2.17 - 0.12

Forest cover loss 0.28 0.21 0.40 - 0.12 0.69

Host-Related Effects on Bat Hepadnavirus Infection



Figure 4. Predicted probabilities of TBHBV infection based on the D2 AICc candidate model set for the effects of a the reproductive status,

proportion of forest cover and sex; and b same as a but including the proportion of forest cover loss as estimated constant over the whole

prediction range (see also Table 2).

Figure 5. Scatterplot of raw data for TBHBV infection status against percental forest cover.

T. Hiller et al.



natural environment, as mechanisms and restrictions might

be directly adapted from well-studied host–virus interac-

tion in humans and animals (Seeger and Mason 2000;

Menne and Cote 2007; Wang et al. 2011).

Our study shows that TBHBV infections in U. bilo-

batum occur not only in the Panama Canal Zone where

they were initially discovered (Drexler et al. 2013), but are

actually widespread in Panama (more than 10.000 km2).

Detected viral loads in infected bats were very high (mean

1.96 9 1011 ge/ml serum) and are comparable to highest

levels reached in chronically infected woodchucks and

untreated chronic human patients (Seeger and Mason

2000). Since high viral load is a predictor for HBV-related

liver cirrhosis, hepatocellular carcinoma, and increased

mortality in chronic human patients (Chen et al. 2009),

similar consequences on the health of chronically TBHBV-

infected bats are imaginable, but further studies are nec-

essary for confirmation.

Near-complete genome sequencing of 15 new virus

strains suggests that the currently observed TBHBV infec-

tions did not originate from a single outbreak in the Canal

Zone, but are widely distributed across Panama. Since

closely related TBHBV sequences are found in distant

sample sites and the diversity at individual sample sites

reflects the overall TBHBV diversity combined with the

relatively slow evolution of hepadnaviruses, a long-term

relationship between the bat host U. bilobatum and TBHBV

in Panama can be assumed (Littlejohn et al. 2016). All

samples cluster together with sequences previously pub-

lished (Drexler et al. 2013), confirming the assignment as

TBHBV. We did not find significant clustering of samples

within years of collection, coinciding with the relatively

slow virus evolution. However, samples collected in Ver-

aguas as well as in Gamboa clustered more often together

than expected by chance. These samples were frequently

obtained from bats sharing the same roost or were roosting

in close vicinity to each other, suggesting a largely unob-

structed gene flow of virus strains within a given popula-

tion. Clearly, we found no indication of genetic isolation by

distance, suggesting a largely unobstructed gene flow of the

virus strains within the country. This concurs with the wide

distribution, high mobility, and abundance of this common

bat species (Baker and Clark 1987; Meyer et al. 2009;

Mantilla-Meluk 2014).

Notably, TBHBV strains from the Gamboa sampling

site are dispersed among the phylogenetic tree, embracing

the complete TBHBV diversity at this particular site. Here,

in contrast to the other sampling sites, U. bilobatum were

frequently observed roosting in the village of Gamboa

closely together under overhanging roofs (O’Mara et al.

2017). Suitable roosting conditions are known to attract

bats and favor the formation of larger groups (Campbell

et al. 2006). A recent study has shown that resident bats are

attracted to unknown, new individuals, possibly to obtain

information about new food sources, which might lead to

close contact between roost members and unfamiliar

individuals (Ramakers et al. 2016). Together this might

increase the genetic diversity of TBHBV, especially in areas

with limited high-quality roosts.

The analysis of non-synonymous mutations among the

TBHBV genome revealed a clustering of amino acid sub-

stitutions within the c-terminus of the preS1 coding region

and within the predicted antigenic loop of the surface

protein. Equivalent sites are exposed to immunological

pressure in the human HBV (Sloan et al. 2008; Glebe and

Bremer 2013), therefore hinting at similarities within the

immunological response in tent-making bats and humans

infected with hepadnaviruses. In addition, the preS1 region

represents a favored aim for non-synonymous mutations

since the overlapping polymerase ORF does not code for

any functional elements in this region, but rather serves as a

spacer between the terminal protein and the reverse tran-

scriptase (Glebe and Bremer 2013).

The combination of PCR and immunofluorescence

analyses enabled us to distinguish between different stages

of infections, if we assume a similar etiopathology of

TBHBV as observed in HBV infections of humans. The

occurrence of individuals with only an antibody response

without the actual presence of viral DNA (n = 12) suggests

that U. bilobatum may have overcome an infection with

TBHBV (Seeger and Mason 2000). We identified also acute

infections, in which the TBHBV DNA was present, while no

antibody reaction could be detected (n = 16), indicating

recently obtained infections (Seeger and Mason 2000; Liang

2009). Most of these individuals were caught within

3 months after the main mating period in February–March

and September–October (Fleming et al. 1972). Bats tested

positive for both TBHBV DNA- and TBHBV-specific

antibodies (n = 4) may represent acute infections preced-

ing seroclearance or chronic infections (Seeger and Mason

2000; Liang 2009). To actually confirm chronic infections,

consecutive sampling of TBHBV DNA positive individuals

over at least two time points is necessary, but difficult to

achieve in the field.

The prevalence of current TBHBV infections detected

in the BCI Canal Zone area (0.8%, n = 262) was lower than

Host-Related Effects on Bat Hepadnavirus Infection



the prevalence previously reported for the same study area

(9.3%, n = 54; Drexler et al. 2013). The original description

of TBHBV (Drexler et al. 2013) was based on a much

smaller sample size (54 vs. 262 individuals), and the high

prevalence might have been influenced by the fact that four

of the five positive bats were caught in the same night at the

same fruiting fig tree (Cottontail, pers. comm.) and might

represent roost mates. O’Mara et al. (2014)showed that U.

bilobatum roost mates may pass on the information of a

promising food source and might therefore share foraging

sites and show group foraging behavior. The social orga-

nization of U. bilobatum might favor the transmission of

TBHBV within a roosting group. Groups may consist of

polygynous harems of 5–50 (Kunz 1982; Chaverri et al.

2010) individuals, with one male per 5–10 females, but the

animals are also found to roost in multi-male or multi-

female groups (Chaverri et al. 2010). Assuming a similar

possibility for sexual transmission of TBHBV as in HBV,

there are two general ways of transmission within a harem

group: (1) the male is a chronic carrier, transmitting

TBHBV onto the females, or (2) an infected female joins

the harem, and passes the virus to the male, which there-

after infects the remaining females. Both hypotheses lead to

a female-biased infection prevalence typical for polygynous

mating systems (Ashby and Gupta 2015) as it was observed

in this study, with females showing a higher prevalence

(9.7%) than males (3.8%). Furthermore, chronically in-

fected pregnant females with high viral load will most likely

transmit the virus to their newborns during birth, which is

a hallmark for all orthohepadnaviruses, including human

HBV. Perinatal transmission will induce chronic infections

in 90% of offspring (Gish et al. 2015). In conclusion, sex

and reproductive state were significant factors affecting the

probability of an infection with TBHBV.

In addition to these intrinsic factors, we identified

forest cover as a significant external factor (Fig. 3). The loss

of habitat and therefore also of natural roosting options

changes the roosting behavior of U. bilobatum (Sagot et al.

2013). Their high flexibility, adaptability, and ability to

roost in ornamental palms in close vicinity to humans

(Rodrı́guez-Herrera et al. 2007; Sagot et al. 2013) and

occasionally even under the eaves of houses (O’Mara et al.

2017) allow them to persist in areas with relatively low

densities of natural roosting options. Roosting under house

eaves could offer energetic benefits by eliminating the

necessity of building a new tent every few months (Chaverri

et al. 2010). Loss of natural habitat and the corresponding

native roost plants may therefore lead to higher densities of

bats in areas with coconut palms, which are most often

cultivated in and around villages (Chaverri et al. 2007;

Sagot and Stevens 2012; Sagot et al. 2013). Higher densities

may also lead to larger social groups, in which females

might be more receptive to stress than males as they show

higher cortisol levels when restrained (O’Mara et al. 2017),

possibly weakening the immune system (Rønsholt et al.

1998; Van der Poel et al. 2000), which coincides well with

our observed female-biased infection prevalence. Lewis

(1992) showed that groups in anthropogenic influenced

areas are more stable due to this scarceness of possible

roosts compared to natural habitats, favoring virus trans-

mission within the group. Roosting in gardens and houses

bring bats in close contact to humans, who, if noticing the

bats, often attempt to expulse them by destroying their

tents (Sagot and Stevens 2012; Streicker et al. 2012).

However, this might result in raising infection levels among

bats, as evicted bats subsequently try to enter other co-

lonies, causing distress and raising fight frequency.

Through enforced roost site changes, already infected bats

may directly introduce TBHBV into healthy colonies

(Kerth et al. 2002; Streicker et al. 2012) and may cause

more rapid spreading in anthropogenic areas than in nat-

ural habitats.

As TBHBV is closely related to human hepatitis B, the

close contact to humans of a possible reservoir species

might sound alarming, but current studies reveal no

imminent risk of any cross-species infections between bats

and humans in their natural habitat. Further, most bats

pose no risk to humans at all and often go unnoticed, but

contribute critically important ecosystem services such as

pollination, seed dispersal, and pest control (Kunz et al.

2011).

Nevertheless, this study emphasizes the necessity of a

better understanding of host–virus systems in the wild.

Many aspects, host sociality for example, remain unex-

plored, but could prove highly important in the propensity

for disease transmission (Hayman et al. 2013; Luis et al.

2013). Although the number of sampled bats in our study

was extensive, the low infection prevalence and therefore

the low number of positive bats entering our models may

limit the precision of our predictions. Nevertheless, our

results are significant and we are confident that our inter-

pretation is well supported. We demonstrate that the loss of

natural habitat can promote the spreading of TBHBV and

can increase the probability of U. bilobatum becoming in-

fected with TBHBV. Anthropogenically altered habitats

provide ideal circumstances for the spread of infection, for
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example, offering conditions promoting numerous, large

roosting groups in close vicinity to each other, roosting

conditions that typically avoided in pristine habitats lacking

human disturbance. As demonstrated by Estrada-Peña et al.

(2014), broad patterns of disease transmission can only be

explained by the combination of environmental, biotic,

molecular, and human socioeconomic phenomena. A ro-

bust understanding of the mechanisms promoting patho-

gen–host relationships, critical for accurate predictions of

disease ecology, requires multidisciplinary investigation of

both host ecology and pathogen ecology.
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Murciélagos neotropicales que acampan en hojas. Neotropical
tent-roosting bats. Ecosistemas de Costa Rica, Santo Domingo:
INBio
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