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Reduction in metabolic rate and body temperature is a common
strategy for small endotherms to save energy. The daily
reduction in metabolic rate and heterothermy, or torpor, is
particularly pronounced in regions with a large variation
in daily ambient temperature. This applies most strongly in
temperate bat species (order Chiroptera), but it is less clear
how tropical bats save energy if ambient temperatures remain
high. However, many subtropical and tropical species use
some daily heterothermy on cool days. We recorded the heart
rate and the body temperature of free-ranging Pallas’ mastiff
bats (Molossus molossus) in Gamboa, Panamá, and showed that
these individuals have low field metabolic rates across a wide
range of body temperatures that conform to high ambient
temperature. Importantly, low metabolic rates in controlled
respirometry trials were best predicted by heart rate, and not
body temperature. Molossus molossus enter torpor-like states
characterized by low metabolic rate and heart rates at body
temperatures of 32°C, and thermoconform across a range of
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temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than
currently known.

1. Introduction
Maintaining body temperature (Tb) is energetically costly, particularly when ambient temperatures (Ta)
are cold and food resources scarce [1]. This problem would appear to be minimal in the tropics, where
Ta is generally high. However, there can be strong resource ephemerality in tropical systems, making
energy conservation a priority [2–4]. As seasonality becomes more intense with climate change [5],
understanding individual-level physiological mechanisms and energetic limitations will be essential to
understand population-level adaptation [6]. This is particularly true for tropical species, which may be
limited in their energetic flexibility due to current adaptation to high Ta [7–11].

One physiological strategy to minimize energetic expenditure is the controlled reduction of the
metabolic rate (MR) and a subsequent reduction in body temperature (Tb). Often described as daily
heterothermy or torpor [1,12,13], this phenomenon is widespread among mammals and birds, and is
typically perceived as a response to mitigate low food availability and low Ta [13]. It is particularly
pronounced in the large and diverse order of bats (Chiroptera), which need effective energy-saving
strategies due to their small size, high metabolic requirements, and loss of large amounts of heat
and water through large, naked wing membranes [14]. Although most common in temperate regions,
subtropical and tropical species of bats also enter torpor and many species exhibit heterothermy when
Ta falls below a threshold (e.g. 24°C: [15–17]) or at night [18,19]. However, desert-dwelling species and
others in hot climates may enter torpor at Ta greater than 30°C [18,20]. The high Tas at which these
bats begin to thermoconform approach the normal homoeothermic body temperature of most mammals
(ca 36–38°C). In much of the lowland tropics, Ta remains high throughout the year despite large variation
in rainfall and subsequent food availability, and this low variation in Ta could make measuring low
energy states via Tb a challenge.

These small differences in Ta and Tb may mask that tropical mammals are more metabolically labile
than we have been able to appreciate [21,22]. The estimates of energetic expenditure that skin or Tb give
may not indicate reduced metabolic states [1,7], and it is increasingly apparent that Tb alone is not wholly
representative of the energetic expenditure of tropical animals [7,11,18,22–25]. We need additional ways
to measure how tropical mammals minimize energetic expenditure in environments with high Ta, such
as the tropics. One such measure would be variation in heart rate (f H) and delivery of oxygen throughout
the body. Adjustment of heart rate at high Ta would allow individuals to enter low metabolic states at
high Tb, thus saving energy while staying alert and avoiding predation [26]. In addition, mostly due to
methodological restrictions, most work has focused on measuring physiological responses to controlled
variation in Ta [16] instead of under natural conditions, which might not reveal the full range of animals’
physiological capacity [22,27–29].

Heart rate provides a measure of energy expenditure independent of Tb measures and can help
clarify the energetic strategies used by animals in areas with low variation in Ta [30–32]. Because f H is
proportional to oxygen consumption, and therefore the MR, it is a more direct measure of instantaneous
individual energy consumption [32–34]. Reduction in f H is one of the first measurable aspects of a
torpid state, with the metabolic rate falling at the same rate as f H. As Tb is a consequence of the MR,
it subsequently falls at a slower rate to a controlled set point [35–37]. This lagging relationship between
f H and Tb in torpor provides the opportunity for independence of these two aspects of metabolism that
can be exploited by tropical animals at high Ta [36,38]. Reduced MR and torpor at high Tb in hibernating
subtropical marsupials, lemurs and arid-adapted golden spiny mice and bats [12,18,25,39,40], all indicate
that f H may be a better predictor of low energy states than Tb or the difference Tb − Ta (Tdiff), particularly
when Tdiff is small, such as in the tropics.

Our goal was to test if Pallas’ mastiff bats (Molossus molossus) enter a state of low MR, measured
through f H, even though there is little room for its Tb to be depressed in a typical torpor state. In captivity
M. molossus modulate their body temperature from ca 28°C during the day (2°C higher than Ta) to
34–35°C during the night when not flying [41], but there are no measures of field Tb. In our field site
in Gamboa, Panamá, these 10–12 g bats forage in social groups to maximize the probability of locating
ephemeral insect swarms in open air. They forage for 30–40 min per night, but return to their roosts 20%
heavier [42–44]. In addition to this short window of food availability, inclement weather can disperse
insect clouds and prevent animals from flying. This makes M. molossus susceptible to unpredictable food
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shortages and the use of low energy states (torpor) may be particularly advantageous in these scenarios.
Molossus molossus spend 23 h in their roost with f H as low as 40–50 bpm and resting rates of 156 ± 71 bpm
at night [43]. These resting rates are 50% lower than expected and indicate that the bats may employ
torpor at high Ta, and presumed high Tb.

We hypothesized that M. molossus would thermoconform at high Ta, with similar low MRs across
a wide range of Ta. Subsequently, low f H will be used by M. molossus across a wide range of Ta. We
established relationships among f H, Tb, Ta and energy consumption in captive individuals, and then
applied these relationships to free-ranging bats roosting in their natural social groups.

2. Material and methods
2.1. Animal capture and marking
We captured 11 M. molossus (10.5 ± 0.7 g) with mist nets as they emerged from their roosts in holes and
crevices underneath houses in Gamboa, Panamá. We marked each bat with a subcutaneous temperature-
sensitive PIT-tag (BioThermo13, Biomark Inc., Boise ID, USA) [26,41] and fitted it with an external heart
rate transmitter (ca 0.8 g; SP2000 HR Sparrow Systems, Fisher, IL USA) that emits a continuous long-wave
signal, interrupted by cardiac muscle potentials [34,45]. To attach the heart rate transmitter, we trimmed
the fur in the middle of the back below the shoulder blades, applied a topical analgesic (Xylocaine gel,
Astra Zeneca, Wedel Germany), and disinfected the skin and electrodes with 70% EtOH [43]. We inserted
the transmitter’s two disinfected gold electrodes ca 3 mm dorsally through a puncture made with a 23 ga
sterile needle. The transmitters were mounted on thin, flexible cloth and then glued over the electrode
insertion points using a silicone-based skin adhesive (Sauer Hautkleber, Manfred Sauer, Germany). The
electrodes were flexible and did not appear to disturb the animals. Transmitters represented 7.0 ± 0.7%
(s.d.) of body mass [46]. We removed transmitters immediately after respirometry experiments or after
2–3 days of deployment on free-ranging bats. We saw no signs of infection at the lead insertion sites, and
f H and Tb records did not indicate elevation in the MR consistent with an immune challenge. Bats either
maintained body mass or gained up to 1 g of mass (0.6 ± 0.3 g), revealing no measurable negative impact
of the short-term deployment of the additional mass of the transmitter.

2.2. Laboratory measurements of heart rate, body temperature and metabolic rate
We used an open-flow, push-through respirometry system [47] to measure rates of oxygen consumption
(V̇O2), carbon dioxide production (V̇CO2) and Tb of six bats for 10–20 h continuously [48]. Owing to
logistical constraints, these were not the same bats that were tracked in the field. We dried incurrent air
(greater than 75% relative humidity, approx. 26°C) with Drierite (WH Hammond Drierite Co, Ltd, Xenia,
OH, USA) and pumped it through a mass flow controller (FB8, Sable Systems International, Las Vegas,
NV, USA) into a 1.97 l respirometry chamber fitted with a thermocouple within a 20 l insulated cooler
that was dark and temperature-controlled (PELT5, Sable Systems). An additional empty chamber served
as a reference (baseline) to the animal chamber. The flow rate was 300 ml min−1 and relative humidity
and vapour production were measured with an RH-300 (Sable Systems). After drying the excurrent air
again with Drierite, we measured CO2 concentration (FOXBOX, Sable Systems), and after scrubbing the
air of CO2 with Ascarite (Thomas Scientific, Swedesboro NJ, USA), we determined O2 concentrations
(FOXBOX, Sable Systems). Chamber temperature, CO2, O2 and relative humidity were recorded at 1 Hz
directly with Expedata via the UI-2 data acquisition interface (Sable Systems). Bats had the option to
roost on vertical or horizontal mesh platforms above a layer of mineral oil used to trap excrement. We
kept the bats at 28 and 32°C for at least two hours at a time, which is equal to or lower than the lower
critical threshold of the thermoneutral zone (TNZ) for this species [49]. We measured bat Tb via PIT
tag (BioThermo13, Biomark, Inc.) every minute using an antenna (HPR Plus, Biomark) in the insulated
chamber [41], and we recorded f H as a sound file (see below). PIT tag calibrations against a thermometer
traceable to the U.S. National Bureau of Standards showed a mean measurement error of 0.21 ± 0.2°C. f H
was averaged over the 1 min preceding each Tb measurement. This gave five Tb and f H measures for each
measurement of V̇O2 and V̇CO2. We used carbon dioxide (V̇CO2) production to estimate metabolic rates
using Equation 10.5 from Lighton [50]: V̇CO2 = (FeCO2-FiCO2) ∗ FR/(1-FeCO2 ∗ (1-(1-RER))), where
FiCO2 is the incurrent CO2 content, FeCO2 is the excurrent CO2 content, FR is the flow rate and RER is
the respiratory exchange ratio (V̇CO2:V̇O2), which we calculated to be 0.8 from empirical measurements
of CO2 and O2. We converted V̇CO2 (ml min−1) to metabolic rates [51,52] that would be comparable to
field rates using the standard conversion of 25.0 J ml−1 CO2. After conclusion of the experiment, the heart
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rate transmitters were removed, bats were offered water via a transfer pipette and placed in the entrance
to their roost.

2.3. Field heart rate and body temperature telemetry
We recorded f H and Tb of five bats that were not part of the respirometry experiments during 1–3
days and nights in their natural roosts. We used telemetry receivers (AR8000, AOR Ltd) connected
to 3-element Yagi antennae (Sparrow Systems) to detect the signal of the heart rate transmitter. This
was then recorded via the mini-dv output to a wave file on a digital recorder (Tascam DR-05). The
maximum recording distance for Tb was 10 cm, and 100 m for f H transmitters; therefore, no flying data
were recorded. Three bats (1646, 1721, 1732) roosted in the walls of a wooden house and had both f H
and Tb sampled every 10 min. The heart rate was recorded continuously for two bats 2253 and 2289, and
Tb was recorded once per minute. Bat 2253 roosted in the roof of a wooden structure under a metal roof
and bat 2289 in the brick ground floor of a house. To temporally synchronize Tb and f H, a smoothed
f H of the previous 60 s was matched to each Tb. Ambient temperature data were recorded at 15 min
intervals by the Autoridad del Canal de Panamá (ACP) for Gamboa and provided by the Smithsonian
Tropical Research Institute’s Physical Monitoring Program. The daytime mean ambient temperature was
25.87 ± 1.21°C (mean daytime minimum to mean maximum: 23.38–28.24), and the mean nightly ambient
temperature was 23.74 ± 0.50°C (mean nightly minimum to mean maximum: 22.74–24.78°C). The ACP
monitoring station was located along the banks of the Panama Canal 400–800 m from the observation
roosts. While these temperatures do not directly measure the more insulated and stable microhabitats
the bats experience in their roosts, they show the potential Ta that bats experience across the day.

2.4. Heart rate scoring
The heart rate from radio transmitters has been visually scored at sampling intervals of 5–10 min
[33,34,45,53]. However, complete sampling can show novel energy-saving strategies like those in tent-
making bats that depress f H several times per hour [26], a pattern that would not have been detected by
sampling every five to ten minutes. We therefore fully sampled the recorded data using an automated
approach in R 3.3.2 [54] to identify and count heartbeats [26]. We applied a finite impulse response
filter in seewave [55] with a window length of 1500–2000 samples to select the carrier frequency of the
transmitter. We counted individual heartbeats by applying a timer function in seewave that ran over non-
overlapping windows of 500 samples. This created a resolution of 88–96 sampling windows per second.
We then applied a kernel density filter in KernSmooth [56] to further eliminate noise that was outside of
the 90% quantile. This approach is conservative and may have eliminated some heart rate outliers, but
the autocorrelated nature of heart rate allowed us to filter out errors probably induced by static or other
interference in the recordings. Automated samples were visually inspected periodically to validate the
filtering method, particularly when there was high variation.

We could not apply all the automated methods to the respirometry data due to large amounts
of interference from the PIT tag reader within the respirometry chamber. Here, we hand-scored f H
by counting all heartbeats within the first 10 s of every minute. Sampling at regular intervals may
underestimate short-term changes in f H [26], but the consistent low f H of the bats throughout our captive
and field experiments did not warrant finer-scale sampling. This was the same time resolution as Tb
measures and provided five f H measures per unit of MR sampling. We then averaged these measures to
create a single value for each 5 min respirometry sample.

2.5. Analysis
We tested the fit of heart rate (f H), body temperature (Tb), and the difference between body temperature
and ambient temperature (Tdiff = Tb − Ta) on the metabolic rate (MR) using generalized linear mixed-
effects models (GLMMs) with individual as a random intercept in lme4 after inspecting the data
for normality and equal variance. We used both the field metabolic rate (FMR, kJ h−1) and mass-
specific metabolic rates (W g−1) to facilitate broader comparisons with published data, particularly those
collected in field experiments. We compared the minimum metabolic rates of M. molossus, identified as
the lowest 10% quantile of the MR for each individual, to minimum torpor metabolic rates for species
found across a variety of temperature regimes (temperate, subtropical and tropical) that undergo daily
torpor from three speciose mammalian orders (Chiroptera, Dasyuromorphia and Rodentia; data from
Ruf and Geiser [13]). A nested model approach revealed that all three of our predictors (f H, Tb, Tdiff)
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Figure 1. Metabolic rate (black line), f H (red circles), Tb (blue triangles) and Ta (dotted line) of an exemplary M. molossus measured
across 20 h in open-flow respirometry.

contributed significantly to explaining the variation in both measures of energy consumption (FMR and
mass-specific MR). We therefore took a model selection approach to evaluate which factors were the
most efficient at predicting energy consumption in respirometry. We calculated the Akaike information
criterion corrected for small sample sizes (AICc) for each model, as well as the confidence intervals
for each model parameter in lme4, and both the marginal (R2

m, fixed effects alone) and conditional
(R2

c, full model) R2 values in MuMIn [57] using the approach outlined by Nakagawa & Schielzeth
[58]. All analyses were performed in R 3.3.2 [54], and we present means ± s.d. for all variables unless
otherwise noted.

3. Results
3.1. Respirometry, captive heart rate, body temperature and energy consumption
All bats reduced their MR and Tb in the respirometry chamber. We recorded a large range of MR
(0.075–1.245 kJ h−1 or 0.0021–0.325 W g−1), f H (59–999 bpm) and Tb (27.9–37.6°C) across the 10–20 h of
continuous sampling. In general, Tb followed Ta when the MR was reduced across the small range of
Ta that we measured, and f H was not dependent on Tb (figure 1 and electronic supplementary material,
figure S1). After physiological arousal generated by observers tapping on chamber walls, f H dropped
rapidly into a low metabolic state, and Tb eventually followed at a slower rate. Bats showed a low MR of
0.1218 ± 0.021 (mean ± s.d.) kJ h−1 (0.00314 ± 0.00051 W g−1). When we further examined the stable MR
at our two Ta, we found that metabolic rates were lower at 28°C (0.131 ± 0.014 s.e. kJ h−1) than at 32°C
(0.160 ± 0.001 s.e. kJ h−1; χ2

1 = 445.77 , p < 0.001; figure 2). These lower MR at 28°C are consistent with
lower f H at 28°C (82.4 ± 6.3 bpm) than at 32°C (115.8 ± 1.0 bpm; χ2

1 = 1059.2, p < 0.001; figure 2).
Molossus molossus generally used low mass-specific MR in the respirometry chamber. Bats showed

a low minimum MR of 0.1138 ± 0.0167 kJ h−1 (0.00294 ± 0.00034 W g−1) and this did not differ from
the minimum metabolic rates for other mammalian orders that use daily heterothermy (χ2

3 = 5.525,
p = 0.154; figure 3). Molossus molossus enter low metabolic states at substantially higher Tb than these
other mammals (χ2

3 = 26.68, p < 0.001; figure 3).
All three predictor variables (f H, Tb, Tdiff) explained substantial variation in the MR, but f H alone was

the best model regardless of any temperature interaction (figure 4; electronic supplementary material,
table S1). All models that included f H had low AICc values and high R2. Models including either
Tb or Tdiff resulted in better fits, but the increase in model fit provided by adding in a temperature
measure came with a high penalty of AICc. The wide range of Tb at any given MR and between the two
temperature regimes illustrates the low predictive ability of both Tb and Tdiff (figures 2 and 4). The best-
fit model predicted energetic expenditure as daily energetic expenditure (kJ d−1) = 0.00106f H + 0.0527
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(R2
c = 0.88). Ta had minor effects on f H, showing a small but significant increase in f H with

rising Ta (χ2
1 = 51, p < 0.001; f H = 7.41 × Ta − 115.67; R2

c = 0.22; electronic supplementary material,
figure S2 and table S2). There was a stronger relationship between Tb and f H (χ2

1 = 398, p < 0.001;
f H = 14.985 × Tb − 353.237; R2

c = 0.55; electronic supplementary material, table S2).

3.2. Free-ranging heart rate and body-temperature telemetry
The mean f H of free-ranging M. molossus in their roosts were generally low across the 24 h period but
were in the range of 58–1068 bpm. Heart rate varied most in the early evening period when bats returned
from foraging or were returned to their roost after instrumentation (figure 5). The heart rate was elevated
to over 1000 bpm during those times. Mean roosting f H were below 200 bpm for all periods of the day
and night (147 ± 57 bpm) and remained in stable low-level states (electronic supplementary material,
figure S3).

Tb of roosting bats were in the range of 25.3–37.2°C and varied both within an hour and across the
day (figure 6). Tb increased with daily Ta (χ2

1 = 39.7, p < 0.001; slope = 0.481, R2
m = 0.121, R2

c = 0.461).
f H in the lowest 10% of observed values (i.e. lower than 90 bpm) were observed in all hours of the day
except 2, 5, 19 and 20 h. These low rates were observed at Tb up to 33°C, and f H of 100 bpm was observed
at up to 36°C (electronic supplementary material, figure S3).

Our in-roost Tb measures indicated that M. molossus used heterothermy, with minimum Tb occurring
during 02.00–04.00 in the coolest portion of the night. As daily Ta increased during the diurnal
period, Tb became less variable, with individuals maintaining a constant Tb that was close to Ta.
When individual variation was accounted for, Tb was mildly related to f H (χ2

1 = 652.0, p < 0.001;
slope = 10.12 ± 0.37 (s.e.m.); R2

m = 0.215, R2
c = 0.450; electronic supplementary material, figure S3). The

Ta and Tb differential was also related to f H (χ2
1 = 44.15, p < 0.001; slope = 6.97 ± 1.05, R2

m = 0.151, R2
c =

0.426) across a range of Tdiff (f H ∼ Tb AIC = 21 720, N = 2210; f H ∼ Tdiff AIC = 2230, N = 224; electronic
supplementary material, table S2 and figure S3).
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Tdiff explained 34% of the variation in f H when inter-individual variation was accounted for via
random effects in our models. This is best illustrated by individual daily variation in these variables
(figure 5). In the example we illustrate, the bat roosted between a wooden ceiling and a metal roof
approximately 2 m above the ground. We could not measure the interior temperature of the roost, but Tb
measured through the PIT tag reader ranged from 25.3 to 37.2°C and heart rate was generally low.

4. Discussion
We found that Molossus molossus entered low energy states independent of Ta, which results in substantial
energy savings across much of the Ta they experienced. In respirometry chambers, f H was the best
predictor of metabolic rate. These results extended to free-ranging M. molossus that used low f H across
nearly the full range of Tb measured. Minimizing energy expenditure in tropical settings with low
variation in high Ta may then be possible through modifications of heart rate and oxygen consumption
independent of Tb. Such physiological adaptations are perhaps vital for tropical lowland endotherms
because they free them from some of the energetic constraints of high Ta, but these effects remain
understudied like many aspects of tropical ecosystems [59].

A range of mammals achieve low metabolic rates at relatively high Tb, described as potential
‘hyperthermic daily torpor’ by Lovegrove et al. [8]. For example, in gerbils (32–35°C) [40], fat-tailed
dwarf lemurs (30°C) [25] and some desert dwelling bats (31–33°C, [18,19]), Tb thermoconforms at high
Ta while the animals remain in low metabolic states, and the MR then increases with rising Ta. Bats
appear to be particularly flexible in their thermal profiles, and some are even able to thermoconform
to Ta > 45°C for extended periods of time, which would be lethal in many other mammals [19,60]. This
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indicates where the bat was released back to its roost. Missing f H and Tb data coincide with the bat’s foraging period and equipment
adjustment. Scotophase is indicated by the filled bar along the bottom.

may be related to the high Tb generated during flight [14], or to the high TNZ upper critical temperature
(e.g. 38°C) found in many species [49], although the thermoneutral dynamics for most bat species are
underexplored. In previous work on tropical and subtropical bats, the finding of a reduction in Tb
associated with heterothermy is variable, and they only show heterothermy when Ta is below 20–25°C
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[29,61–64]. However, many of these species, particularly those studied in free-ranging field conditions,
have only had Tb measured. It is possible that like M. molossus, they enter low energy states at relatively
high Tb and maintain low heart rates across a wide range of Ta and Tb. Entering a low energy state
at high Tb, or a Tb within the thermoneutral zone, would allow animals to lower their FMR without
the costs of rewarming that are incurred as they leave torpid states [65], while taking advantage of the
benefits of heterothermy with minimal costs [7,8]. Passive warming would be particularly advantageous
for nocturnal animals that enter their active periods as Ta lowers and is less likely to provide much
passive thermal support in their transition towards active states.

Our respirometry measures did not capture the full metabolic potential of M. molossus observed
in the wild roosts. The Ta that we used in our respirometry measures did not extend far beyond the
lower critical temperature (ca 30°C) of the thermoneutral zone reported for M. molossus [49], but energy
consumption at these temperatures was far lower than the basal metabolic rate (BMR) reported for this
species, and steady-state MRs were lower at 28°C than at 32°C, with a mean difference of 0.029 kJ h−1. The
mean of the 30% quantile of respirometry MR (0.00314 ± 0.0005 W g−1) was only 39% of the previously
measured BMR for M. molossus (0.008044 W g−1 [49]). We did not observe this value until the 90% quantile
of our data, placing it among the highest MRs we recorded for our bats. The high temporal variability
in metabolic rate indicates that bats did not employ a stable BMR in our respirometry measurements,
despite extended measurement periods and Ta that should be within a neutral range for this species.
Accurately measuring the BMR and the thermoneutral zone is difficult when species thermoconform
across a wide range of Ta [7,66]. Our data show that measuring this type of energetic and thermal
flexibility is important, and that we may find that this energetic flexibility is common in tropical bats.

Heart rate is an accurate measure of the metabolic rate during steady-state conditions and
when transitioning between resting states. However, torpor with strong heterothermy is not just an
extrapolation of a resting state as regressions of torpid bats would underestimate resting V̇O2 by up
to 75% [67]. The low metabolic states in M. molossus do not show such a curvilinear relationship, with
linear models providing the best fit to our respirometry data. We are careful not to infer a continuous
linear relationship once animals are exercising because this probably underestimates the metabolic rate
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during exercise [30]. Through careful calibration and the use of nonlinear exponential estimates of energy
consumption from f H based on body mass and heart mass, it may be possible to even more accurately
estimate the energetic expenditure of exercising free-ranging animals.

The regular low metabolic states used by M. molossus in both respirometry and natural roosts may be
an overall energetic conservation strategy to compensate for their ephemeral food resources. These small
bats typically forage over water bodies for less than an hour per night on unpredictable, but rich patches
of insects at dusk and dawn [42]. When nights are particularly windy or rainy, these bats tend to forgo
foraging (DKN Dechmann, unpublished data), and there is a positive relationship between the duration
of foraging and f H in the roost [43]. Furthermore, we observed Tb reductions across a wide range of Ta,
with free-ranging bats using Tb of 25.3–37.2°C. Multi-day torpor bouts have not been observed in M.
molossus and we did not attempt to measure this in our experiment. While M. molossus are capable of
maintaining stable blood glucose levels for up to 48 h of fasting [68], total reduction of the MR through
extended torpor-like states may allow them to cope with multiple nights of inclement weather. In some
cases, Tb was lower than the Ta recorded at the Panama Canal (electronic supplementary material,
figure S2). Bats then select cool, stable roost microhabitats regardless of their ability to maintain a low MR
at high Tb. The use of torpor by tropical and subtropical mammals [13,16,22,25,69,70] illustrates the utility
of reductions in metabolic rates and Tb during periods of low food availability. However, starvation
risk is not the only driver of torpor, as well-fed bats will also use torpor to minimize time outside the
roost [17]. These torpor and torpor-like states at high Tb may be particularly important to reduce the
evaporative water loss incurred by bats via the large naked membrane of their wings [14], which can be
reduced by 90% during torpid states [71,72]. The possibility of low energy states at relatively high Tb
allows M. molossus to remain active and alert and move away from observers. This means that unlike the
lethargic torpid bats with low Tb in the temperate zone, bats at higher Tb can escape from predators at
any given time [71,73]. Daily torpor-like states in M. molossus allow them to minimize exposure to risks
outside of their roost (such as predators and water loss), while maximizing their energy savings.

5. Conclusion
We suggest that the low energy state that we measure in M. molossus is torpor with shallow heterothermy.
In other small mammals, minimum f H during daily torpor at low Tb is near 70 bpm [36,37,74–76]. This
is similar to the minimum stable rates (58–75 bpm) of M. molossus both during respirometry and in
their natural roosts, but much higher than the f H of 8 bpm for hibernating bats [67]. The metabolic
rates used by our bats were well within the ranges reported for other mammalian orders that use
daily heterothermy (figure 3), but occur at higher Tb. Bats evolved in the tropics and our findings in
M. molossus are probably an example of the basal form of heterothermy that evolved near the root of the
mammalian radiation [77]. The ability to maintain low metabolic rates and subsequently low Tb in deep
torpor or hibernation would build upon this set of regulatory networks driven by cellular requirements
for oxygen diffusion via f H, which reduced total metabolic rates while in thermoneutral conditions or
above. Tropical heterothermy or torpor may allow individuals to flexibly adjust energetic expenditure
to rapid environmental changes at fine timescales, as well as minimize energetic expenditure during
pregnancy and lactation when Tb reductions may be constrained [7,17,64,78].

Low f H in response to lowered oxygen demands is an effective, flexible strategy. Work integrating
energetic expenditure via f H in birds repeatedly shows lower energetic expenditures than would be
predicted [33,34,45,79,80], indicating that a diversity of adaptations may be possible by manipulating
one of the primary drivers of energy delivery to metabolism. The widespread nature of heterothermy or
torpor-like states in tropical species leads to challenges when using traditional cut-off Tb or frequency
distributions of Tb. Heart rate studies in tropical bats, including this study, have shown surprising
metabolic strategies to cope with life in warm ambient temperatures [21,26]. This direct information
on the flow of energy through an individual allows us further insight into the variability of energetic
strategies in tropical systems, particularly as ambient conditions become more unpredictable.
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